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Abstract , Acknowledgments

-Although 5.4 billion board feet of lumber was converted to The author thanks Tom Foley of Foley and Sons,
258 million pallets in 1980, design information for notched Bargersville, Ind., for donating the oak stringers used in

*. pallet stringers is limited. In this report, methodology is this study. Also appreciated was the use of a notcher
developed that determines stiffness and strength made available by Hazelthorn Machine Co., Terre Haute,
reductions caused by notches in pallet stringers. Ind. The efforts of William Baldwin, executive vice

president of NWPCA, in coordinating these donations are
A finite element (FE) structural model is developed to gratefully acknowledged.
model notched stringers. Displacement and stress
predictions agree well with experimental measurements. The statistical design and analysis were capably handled
The author derived closed form equations that by James Evans and Carol Link of Forest Products
approximate FE displacements and maximum stresses as Laboratory (FPL). The author also acknowledges the
functions of notch depth. The stiffness equations are support of Lisa Marin who helped formulate the study
based on modeling the stringer with beam elements of an plan while employed at FPL.
equivalent' geometry.

The stiffnesses and strengths of 600 full-size, green oak,
pallet stringers with various notch geometries and loading
conditions were measured. Measured deflections agreed
well with stiffness equation predictions. Stringer strength
was unaffected by varying the fillet radii of the notch from
1/2 inch to 1 inch. A group of stringers with sharp,
rectangular notches (no fillet) had lower strength values
than the filleted groups.

I derived equation (15) from the FE results to predict
strength as a function of notch depth for any loading
condition. By adjusting the equation, both mean and fifth
percentile strengths were predicted. Agreement between
predicted strengths and experimental results was
excellent.
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Strength and
Stiffness Analysis
of Notched, Green
Oak Pallet Stringers
Terry D. Gerhardt, Research Engineer K ]
Forest Products Laboratory, Madison, Wis.

Introduction

Although 5.4 billion board feet of lumber were converted The notched beam literature has focused mainly on
to 258 million pallets in 1980 (McKeever and Hatfield notches with sharp corners cut in clear wood. Hirai and
1984), design information for notched pallet stringers is Sawada (1980) present experimental results from tests on
limited. Pallet design procedures as proposed by Wallin et Akaezomatsu (Picea glehnii) with rectangular edge
al. (1976) consider design criteria for both stiffness and notches of various depths and widths. A size effect for
strength of notched stringer members. The deflection both beam depth and width was observed, although the
equations recommended are the standard elementary latter was not evident for beams with wide notches. An
beam equations (uniform-unnotched beam, isotropic empirical model to predict moment-carrying capacity was
material, Bernoulli-Euler assumption, etc.) which are derived based on the principles of linear elastic fracture
modified through an assumption that the deflection mechanics (LEFM). Murphy (1979) also used a fracture
increase from notching is proportional to the material mechanics approach to predict failing loads for slit-
removed. The strength equations were also determined notched beams. Experimental results for clear Douglas-fir
from beam theory without any real consideration of the beams with both rectangular and slit notches are
stress concentration from the notch. presented. Murphy concludes that slit-notched beams

have a lower strength than rectangular-notched beams
In this study, methodology is developed to systematically when the remainder of the geometry is the same. Stieda
determine stiffness and strength reductions caused by (1966) tested green and kiln-dried notched Western
notches in pallet stringers. The particular objectives are to: hemlock, Balsam fir, and Eastern white cedar. Results

show that narrow notches have a relatively larger effect . .
(1) Determine the effects of varying notch depth and fillet on strength than wide notches. Additionally, Stieda
radius on the strength and stiffness of oak stringers compares a small slit to a small semicircular hole andcontaining a single notch; and finds no great difference in strength.
(2) Develop design equations for conventional double- f
notched oak pallet stringers.

The scope of this study is limited to the short-term
strength of green oak stringers. This study is part of a
cooperative pallet research program involving the National
Wooden Pallet and Container Association (NWPCA),
Virginia Polytechnic Institute and State University
(VPI&SU), and the Forest Service. Results from the study S
will be implemented in a computer structural model of a
pallet, which is a main objective of the overall cooperative
research program.
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Experimental Procedure

Palka and Holmes (1973) report experimental results for In this section, experimental procedures are detailed. In
small square-notch cantilever beams of green, clear summary, 600 oak pallet stringers were selected from a
Douglas-fir. Strength and stiffness versus depth single mill using industry quality guidelines. Pallet-type
regression equations were developed from the data. notches of varying geometries were cut into 510 of the
Ultimate loads and stiffnesses were found to strongly stringers. Boards were mechanically tested to examine
depend on beam depth. The strong dependence of effects of loading conditions and notch geometry on
strength on grain slope was observed by Leicester (1974) stiffness and strength of pallet stringers.
in tests of Australian timbers with sharp rectangular
notches. The author also tested wood with slits of varying Materials
notch radii. Strength was found to be somewhat
independent of notch root radii. Recently, Leicester and Red oak pallet stringers were selected from a single mill.
Poynter (1980) proposed design equations for beams with Boards were green and had approximate dimensions of
unfilleted notches. Richards (1974) tested clear, yellow- 48 x 3.75 x 1.5 inches. In selecting each board, NWPCA
poplar beams with shallow, curved notches on the quality guidelines for pallet stringers (NWPCA 1982) were
compression side. Richards found little dependence of followed. Rules for both limitation of defects in the
strength on notch root radii or notch depth. stringers and notch geometry are summarized below.

The notches cut in pallet stringers are rectangular edge 1. Knots and holes. The diameter of sound knots shall be
notches with fillets for stress relief, Examination of the no greater than one-half the width of the piece in which
stiffness- and strength-reducing effect of this notch in they occur. Loose or hollow knots and holes shall not
wood beams has received limited attention in the exceed one-quarter the width of the piece in which they
literature. Stern (1972) tested pallet stringers to examine occur. Knots over 1/2 inch shall not be allowed in the
potential strength improvement from the use of cross nails stringer immediately over the notched areas.
in the notch region. The effects of notch geometry on
strength were not considered. Recently Bastendorff and 2. Splits, shakes, and checks. Crack or grain separation
Polensek (1981.1984) tested notched and unnotched red length must be no longer than twice the width of the piece
alder pallet stringers. The effects of notching on modulus if contained by nailing. Checks are unlimited in quantity,
of elasticity (MOE) and modulus of rupture (MOR) are length, and location.
presented for one particular geometry. The results 0
indicate a 37-44 percent reduction in MOR for notches 3. Cross grain. Slope of grain must not exceed 1 inch in
with a 9-inch width. 1.25-inch depth, and fillet radius of 5 inches.
0.75 inch.

4. Wane. Wane is limited in stringers to one-third nailing
face, one-half other face, and unlimited in length.

5. Decay. Decay is not permitted.

6. Notches. To be 1-1/2 inches deep x 9 inches long ."-"-

across the bottom, 3/4-inch radial cuts at top corners, and - • ,
a minimum 7-inch flat surface at the top. All dimensions
excepting the minimum to be ± 1/4 inch.

These rules were amended slightly in regard to restriction
of 1/2-inch knots near the notch. Typical specifications
often require that no knot be within 2 inches of the cutout
area (Mclain 1982). This criterion was used in the
selection process.

6 0.

* 2

-7.



...

Stringers were randomly sorted into nine different groups.
Every group was associated with either a particular notch
geometry (single or double) or an unnotched control ---

group. The amended criteria for knots near the notches I -- '-
complicated the selection process. For each group, knots i "
were excluded from different regions of the stringer I , B 2

depending on location and depth of the notch or notches _______......_"-_.__

*. to be cut. The knot criteria, in effect, sorted stringers with
various amounts of clear wood into different groups. " ,
Generally speaking, an increasing amount of clear wood
was contained in groups with stringers that were:

(1) unnotched,
(2) single notched, and V
(3) double notched. e'

Figure 1.-Single-notched stringer geometry.Boards not satisfying knot or other grading requirements (ML84 5507)
for the group being sought were rejected. A total of
1,480 boards were sampled to obtain the 600 selected.

Methods I
After sampling was completed, 1 or 2 notches were cut in
390 boards with an industrial (single) notching machine. . . I .. _."
Two notches were cut by making two passes on the same I I I ,
stringer. Details of the various notch geometries cut are II j 1 ,
described in the next section. After notching, all 1-
600 boards were dipped in a 0.5 percent solution of
sodium pentachlorophenate to inhibit the growth of blue (
stain. The boards were then stacked for several minutes
before being loaded on pallets and sealed in plastic. The ...... 4_ ... __ .. ...-.- "-
stringers were transported to the Forest Products
Laboratory (FPL), Madison, Wis., and stored at 360 F until
tested mechanically. In this manner, boards were
maintained in green condition. Figure 2.-Double-notched stringer geometry.

Experimental Design (ML84 5505)

The 9 groups based on notch geometry were randomly
subdivided into 20 groups containing 30 boards each. The following scheme was used for the group
Each of the 20 groups represents a specific notch identification labels. The first letter refers to loading
geometry and loading condition. The groups all fit into one condition: M and C indicate two-point and center-point
of the following categories: loading, respectively. For groups containing single notched

stringers, the second letter refers to a particular notch
(1) stringers containing a single center notch (fig. 1), dimension which is varied in a series of groups. Thus, the
(2) stringers containing two notches cut symmetrically letters D, R, and S indicate notch depth, fillet radius, and
about the center of the stringer (fig. 2), and cut slit at fillet, respectively. For groups containing
(3) unnotched stringers. stringers which are double-notched or unnotched the
Figures 1 and 2 give the geometric quantities defining second letter is T or C respectively.
board and notch dimensions which are: stringer length (k),
stringer height (h), stringer thickness (t), notch depth (D), Single-Notched Stringers _
notch width (W), fillet radius (p), and distance between Although pallet stringers are double notched, single,
notches (2q) (fig. 2 only). The geometric quantities defining center-notched stringers (fig. 1) more clearly expose the
toad and support conditions are: distance between effects of notch depth, fillet radius, and loading conditions
sipports or span (s), distance between support and on stiffness and strength. Notch dimensions and loading
symmetric load point (a), and distance between support conditions for the groups containing single, center notches
and closest notch edge (m). are presented in table 1. All boards have common

dimensions: W = 9.0 inches, s 44 inches, and
m 17.5 inches.

* 3



Table I1.-Groups containing single-notched stringers' (fig. 1) Two additional groups (M-S-1 and M-S-2) had stringers

Group BorsNotch dimensions notched on the industrial notcher with D 1 .5 inches and
identi- Bors Loading p -------- = 0.50 inch. Stringers in these groups had slits cut

fiain tested PD parallel to the wood grain at the top of the fillet with a
bandsaw. The slits were cut at FPL and were either

- --- -- In.-- ------------
M-0-1 30 QP2 0.50 1.0 1/2 inch (M-S-1) or 3 inches (M-S-2) in length. These
M-D-2 30 OP .50 1.5 groups allow a qualitative examination of the effect of0
M-D-3 329 OP 50 1.875 splits at the fillet on stringer stiffness and strength.
M-D-4 30 OP .50 2.5

* C-0-1 30 CP1 .50 1 0 Double-Notched Stringers
C-D-2 30 CP 50 1.5 The experimental design of the three groups containing
0-0-3 30 CP .50 1 875 double-notched stringers (fig. 2) is presented in table 2. All
0--4 28 p5 2.5 boards had common dimensions: D 1.5 inches,
det-1 30 O.5015 W = 9 inches, p = 0.50 inch, and q 8.5 inches. Groups

.......30 OP ... 1 C-T-1 and C-T-2 were center-point loaded, and group

M-R-25  30 op2 0.5 1. 5/ nh(--)o nhs(MS2 nlnt.Tee- -

M-R- 5  3 OP 1 0 1I M-T-1 was two-point loaded (a = 9.0 in.). The spans were
M-R-3 5  30 OP 100 1.5 s 44 inches (m = 4.5 in.) for groups C-T-1 and M-T-1

and s = 40 inches (m = 2.5 in.) for group C-T-2. The two
M-S-1 30 QP 50 1.5 spans examine the effects of support length on stringer
M--3 30 QP .50 1 5 stiffness and strength.

MStringer dimensions (approximate): 48 in. h - 375 in., and
1 5 in Notch and support dimensions: W 9.0 in s 44 Unnotched Stringers

in. and m 175 in (see fig I). Unnotched stringers were tested in quarter-point (M-C-1)

Quarter-point loading (a 11 in. and center-point (C-C-i and C-C-2) loadings as shown in
table 3. Spans were s = 44 inches for groups M-C-1 and

Mistakes during notching resulted in less than 30 boards. C-C-1 and s-= 40 inches for group 0-0-2.

Center-point loading Q
Table 2.-Groups containing double-notched stringers' (fig. 2)

Notches cut at FPL
Group Boards Notch dimensions

Sharp notch, no fillet, identi- Loadin
1/2-in lit cutoint topg of f .) fication tested Loadingan m

t-in slit cut into top of fillet. 44- - -30 -44c s .---
C-T-1a 30 cP 44 4.5

I Cen ltr-po int o tpofad i llet •-13 34 .

C-T-2 30 OP 40 2.5

In series M-D-12 through M-D-4 and series C-D-1 through Stringer dimensions (approximate): Q ng48 in.. h 3.75 in.. and

o-0-4 the effect of notch depth on stringer stiffness and t = 1.5 in. Notch and support dimensions: 0 1.50 in., W 9.0

strength is examined under quarter point (a =11 in.) and i. .0i. n . n sefg )
center-point loadings, respectively. The industrial notcher 2 Two-point loading, a =9.0 in.

* was adlusted to cut notch depths varying from 1.0 to
2 5 inches (see table 1). The notcher cut an approximate Center-point loading.
fillet radius ofc, 0.50 inch. This radius represents the
low end of the NWPCA allowable (0.75 in. -0.25 in.).

Table 3.-Groups containing unnotched stringers'
The effect of fillet radius on stringer stiffness and strength
was examined with groups M-R-1 (M 0.50 in.), M-R-2 Group Boards
0 0 75 in ). M-R-3 (( 

pi 1.00 in.). and MRO (sharp 4iti-n tested Loading "

notch) All four groups were quarter-point loaded and had t = 15 in.Notcand uppot dimnsios: D 1.5 n 9

notch depths of D 1.5 inches. Since the fillet radii were p 30 . 2 44
not readily changeable on the industrial notcher, the T-p a =

dril apprprte siz hu oles inpthestvringro nd the cu h•n

wnches ee cut at FPL. The procedure followed was to C-C-i 30 P
3  44

drfll arorites ize ofo, l inhe hsraigeresdenutC-C-2 30 OP 40
remainder of the notch with a bandsaw. The industrial " dimnson ( Q'"8_in.. h_3,75_in_, and

notcher utilized cutting tools mounted on a rotating shaft. Te sona i te in

tru 1.5rd in.ing

Comparison of results from groups M--2 and M-R-1 t tested

allows a comparison of the notching techniques; stringers 2 Quarter-point loading, a 11 in.
in the two groups have the same notch geometry and
lowsia conditions. 3 Center-point loading.

loading

i 4 •
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Theory

Finte element (FE) structural models of notched pallet (2) The shape and stress-free conditions are satisfied
stringers are presented in this section. Displacements and exactly on the fillet surface using conformal mapping and
fillet stresses are computed for various notch geometries reflection arguments.
and stringer material properties. Closed form equations (3) Continuity of analytic and polynomial displacement
for stiffness and maximum fillet stress are also derived, fields is satisfied in an approximate manner on the
Finite Eremaining boundary using a variational principle.p Finite Element Modeling
FE models of double- and single-notched stringers are Results employing a hybrid element with conventional

shown in figures 4 and 5. respectively. Note the displacement-based finite elements were compared

exploitation of symmetry in the modeling. Cubic previously with elasticity solutions (Gerhardt 1984). The

oparametric plane elements (Zienkiewicz 1977) model hybrid element was found to be remarkably accurate and+sopramtncplan elmens (Zenmwic 197) mdel eff icient.

the strinoer except in the vicinity of the fillet. The 12-node
soparametric elements are contained in a computer The author's computer program generates meshes from
program developed by the author (Gerhardt 1983). specification of h, D, p, and dst. Variable sic is defined as the

lengths of the two sides of the hybrid element closest to
The fillet regonof the notched stringer is modeled with rhi the fillet as shown in figures 4 and 5. Modeling with the
special hyb rid F E (G e rha rd t 1984 ). Fo rm u latio n o f th ishy rd e m nt i co v i nt s ce a u a e r s l s a e
element contains the following features: obtained using a single element at each fillet, Further, the

(Il All governing differential equations of linear elasticity cubic element computes fairly consistent results, even as
theory are satisfied in the elements interior using complex its aspect ratio is changed when meshes with different
variable theory. notch geometries are generated.

lie 1/2 _

F q4 IV%2
1)4 2n2n

i 1 01I I W - 2 1, 2 I I , ,_ h-D - u 'I ,

,W2~ i u+ 91 / --- I i- i] h -.--.
" ' '4 5"-2n-,r 4 5"'L2n -P

Figure 4 -FE mesh for double-notched stringers. (ML84 5509)

S9"W/2-2-"

hD-11

"W/2,.

Figure 5 -FE mesh for single-notched stringers. (ML84 5510)
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in Appendix A, FE computed displacements are compared Table 4.-Assumed elastic property ratios for FE analysis,
to experimental measurements on a small, single-notched, Gru
Sitka spruce Stringer. FE computed fillet stresses are idnitonp EdG, E,/E,
compared to photoelasticity measurements. These__- _-___-.-

comparisons with experimental data indicate tnat the FE G8-E6 8 6
model computes reliable displacements and fillet stresses. G16E12 16 12

G16-E24 16 24*Assumed Elastic Properties G32-IE12 32 12
G32-E24 32 24

For an orthotropic solid loaded in plane stress, theE,--_________ _

governing differential equation of linear elasticity theory . , .5fral
can be formulated in terms of the material constants tand

(Gerhardt and Liu 1983) where StfnesEuain

Hirai and Sawada (1979a) developed a method for
Eand h 2(2 (Ga ,, (1) estimating center deflection in wood beams containing

square notches. The method is loosely based on the
concept of released strain energy. In essence, the notch is

The constants E, G, and vrepresent Young's modulus, the replaced by tapered and rectangular sections as indicated
shear modulus, and Poisson's ratio, respectively, by dashed lines in figure 1. The slopes of the tapered
Subscripts indicate directions in the standard manner. sections are specified by the constant ias shown. The

authors computed center beam deflection for this
Whe'i the x direction is associated with the longitudinal (Q) 'equivalent' geometry using elementary beam theory. They
axis and the y direction with the radial (r) or tangential (t) empirically determined (, from third-point bending tests of
axes, the term 2 ,,., is much smaller than E.IG., for most one species (Abies sachalinenis Mast.) with beams of
wood species (Bodig and Goodman 1973). Thus, dimension s 750 mm, h =50 mm, and t = 20 mm. and
computed displacements and stresses can depend on the a center notch of width W =10 mm (see fig. 1) for the
value chosen for ,, only slightly. Furthermore, the results cases o = 0.10, 0.30. and 0.50, where 0 is defined as the
can be characterized in terms of the ratios E,/G,, and dimensionless notch depth, o = 01h. The best

E/,'The ratios chosen for the FE analysis which follows experimental-theoretical agreement was obtained by
are lsted in table 4. Most wood species have elastic taking r 5. The authors also tested additional beams

*property ratios that fall between these broad ranges with notch dimensions ranging from W = 3 to 80 mm and
Bodig and Goodman 1973). All FE calculations employed o from 0.10 to 0.50. Center deflections computed by the
pla ,e stress analysis with E, =1,500.000 lb/in.2 and model with a = 5 agreed well with experimental

.~035 measurements. In another study Hirai and Sawada (1979b)
tested beams of seven different Japanese wood species

Stiff ness with notches of various depths and saw kerf width
(3.0 mm). Good experimental-theoretical (ax = 5)

The accuracy of the FE model is experimentally verified in agreement was obtained for both center-point and third-
Appendix A for stiffness computations. Closed form pitlaig
equations, however, are preferred for design applications. Differences in deflections of wood beams containing
Further, the FE stringer models cannot be readily used in sqaenthscm rdtofltdnthswilb

a stuctual alle moel. sin suc a etaied odelfor negligible. The method previously described is therefore -
each stringer will result in an excessive number of applicable for notched pallet stringers. One modification
degrees of freedom for the pallet. was made in derivation of equations presented here. Hirai

and Sawada (1979b) replaced the distance between
In this section. closed form equations for stringer stiffness double notches by a flat section of minimum width, i.e.,
are derived. These equations are based on a simplified h - D. Calculated deflections were larger than measured
structural model for a notched stringer. The closed form deflections by 2 to 33 percent. The difference may be
equations are compared to FE results. even greater for pallet stringers due to the substantial

distance between notches. In the equations derived here,
Dsplacement boundary conditions wiii introduce other combinations of equivalent' tapered sections are used on both sides of

eiastic constants into the formuiation (Gerhardt and Liu 19831, In modeling both notches.
tPr9 stringers, the oniy dispiacement conditions imposed are at the
supports Any difference in stress computation between this problem and

4 one with the resultant forces applied at the supports must be localized in
nature by Saint Veniant s principle (Timnoshenko and Goodier 19701.

7
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U1_', z:2g this equivalent geometry, closed form The constants in these expressions are defined as
e,:pressions for deflection of any pont can be derived follows:
..s ,q Castigianos treorem (Seely and Smith 1955). (1) P and Q/2 are concentrated loads applied as shown in
Aithcugh the equivalent geometry is quite simple, figures 1 and 2.
a ;ecra.c manipulation becomes quite tedious (2) w is a uniform. distnbuted load apphed between the
Cr_!,Qutations were therefore done in symbolic algebra supports with dimension force lengthn
Hearr (3) Dimensions s and a are defined in figures 1 and 2. -0

deflectons .(at x s,'2) and (at x a) were (4) E is the modulus of elasticity (MOE) and it contains
cons.dered. shear deformation and depends on loading conditions

(5) 1is the second area moment for the unnotched cross
Tie a-tnor derved the foliowing expressions for double- section, i.e. I th 3/12 .
,'ct.ne, stringers (fig 2) loaded under three different (6) -amtc:Ntdt,Cr's center point (OPI. two point (TP), and uniform (6) , and rt, are dimensionless factors defined in

,aI center point twopint and u-nmfAppendix B which depend only on geometrical quantities.
l,, F$' all cases. m a m W i.e. on o, m. h, W, a, s. and .

Ps The coefficients of ,, and ?7, in each expression are
48 '. CP load (2a) unnotched beam deflections for the relevant location and
48EI loading condition. The fact- "nd Y, should be

interpreted as the contr 'he notch to beam
Pai3s' 4a-) deflection.

S , 8E ".CP load (2b)
48EI Comparison of Stiffn-ds Equations with FE Results 0

Qa(3s' 4a2) FE stringer models were -' ted with the same
r TP load (3a) geometries as those mechw.cally tested. All models

48EI generated had dimensions: £ 48 inches, h -"

3.75 inches, t = 1.5 inches, s = 44 inches, W
4a"3s 2 TP load (3b) 9.0 inches, and p = 0.5 inch. For the double-notched

48EI stringers: a 9.0 inches, m = 4.5 inches, and q =

8.5 inches. For the single-notched stringers: a = •
5wsI 11.0 inches and m = 17.5 inches. For these geometries,

S384E1 U load (4a) notch depth was varied in seven equal increments from
D 0 1.0 to 2.5 inches ((p = 0.267 to 0.667). Models were

wals, 2sal , a') generated for all six property sets of table 4. Deflections
.. E U load (4b) , (at x = s/2) and , (at x = a) were computed at
24EI middepth of the stringer cross sections for center-point.

two-point, and uniform loading. 0
The author also derived the following expressions for
s,ngle-notched stringers (fig 1). For all cases, 0 a - m Results indicated that doubling the ratio ESE, changed
and 0 - m ,1D computed deflections by only 0.5 to 1.5 percent. This

negligible variation of stringer stiffness with assumed E,/E, ..-

OP load (5a) ratio was observed for all three E/G, ratios. Deflections
48EI were more sensitive to assumed E]G, ratio. Computed

deflections for group G32-E12 exceeded those of group

Pa(3s' 4al) G8-E12 by as much as 22 percent for the same notch
1 ,0 CP load (5b) depth."48EI •- . *

Young's modulus (E,) and the shear modulus (G,) are
, Qa(3s' 4a 2) TP load (6a) required as input for the FE analysis, while MOE (E) is

48EI required in the stiffness equations. Relations between
these quantities can be derived using beam theory. Shear

40a13s 4a) deflections cal be computed by Castiglianos Theorem
48EI TP load (6b (Seely and Smith 1955) or by a method developed by

Orosz (1970) I derived the following relations:

5ws, E,
. U load (7a) E - E

384EI E, (8)

wa(s, 2sal a') G,
0 was 2a~ ~l i~. U load (7b)

24EI where .\ 1.2 h_2/s2 for center-point loading. .\ 2 4 h2/
(3s 2  4a 2 ) for two-point loading, and .\ 0.96 h2/s for
uniform loading

.* " ,8* ° . .



F. he FE rasuts, st sts o -
equation i8). FE ', and ., values we .mp4 *i .
three E&'Gh ratios. In all, 126 coeffic:ents were
. notch depths x 3 property sets x 3 loadili! .,
2 deflection locations) for both s ig' -- i, c: ' -_

stringers. These were compared tc
lrum the derived equations in App:Ji, B

Detne - as the average (absc.Ae. ". rn. .
values from the FE results and tie stiffnes -,
expressed as a percentage of tnt FE -a;,u. I

16.9 percent for the double-notched stringers mun:
,' 13 7 percent for the single-notched stringers wen.r

5 By setting ,, - 3. the differences were .edL. -e ,
57 and 5.4 percent for double- and single-notore..

stringers respectively. Furthermore, when 3, - LL .L.i. 1- . . L - .

exceeds 10 percent mainly at the extreme notch depth D
2.5 inches ,: 0.667). At this depth the stiffness E D r-.voe s Notch Depth q) D 'h

equations overestimate the FE predictions by 8 to 18
percent Hirai and Sawada (1979a) also found the stiffness Figure 6 -Stiffness coefficients , and ,, versus
equations to overestimate measured midspan deflections ,o fo double-notced stringers under center-point
of deeply notched beams. Notches in pallet stringers are load DOimensions (see fig. 2): 1 48 inches, h
seldom cut this deep In figure 6 (center-point load), figure 3 7: Inches, t 1.5 Inches, s 44 inches. W 9
7 ltwo-point load), and figure 8 (uniform load) this inches. a - 9 incnes. m . 4 5 inches. and q
comparison is made graphically for the double-notched 8.5 inches. (ML84 5501 .

stringers with dimensions previously defined. For typicil
pa;let stringer notch depths, the predictions of the
st!ffness equations ((, 3) and the experimentally verified
FE model show close agreement. Furthermore, the 0
stiffness equations are conservative for deeper notches

Resu- ts for . indicate that the equivalent notch geometry : -
31 accurately estimates deflections at points other Z

tna-r midspan Adequate prediction of deflection alono .he
strinqer iength is required in a structural model of a pallet
strir'ger Figures 6-8 indicate that pallet stringers can be '
rehianly and simply modeled with rectangular and tapered
Oearn elements The model can be further simplified by '

Smodeing the tapered elements with uniform elements of -,

reduced stiffness (Kosko 1982)

I found the actual values of ., that minimized ) were
2 21. 35 pct) and 20(-, 29 DCtfo - . .

doubie- and single-notched stringers. respectively. Using
these values, the fit is improved for the extreme notch r ,s orless N.tch pti. hi h

depth of D - 2.5 inches I1: 0.667) at the expense of
worsening the fit at smaller notch depths which are Figure 7 - Sthness coefficients 2,. and ;' versus
common for pallet stringers Thus. taking , s 3 isieo e fig2r 4 nd -. C

recommended Pallet notches are substantially wider than ! 7 cru esit ! 5 inches, s 44 n n .c. h

the notches tested by Hirai and Sawada (1979a. 1979b) ,."Ihe
, d 9 n,hes. m 4 5 j' , " A -

Also the range of ,. considered in this paper is higher than 6 5 ,rches (PVL84 i502)
the one considered by the two authors. Numerical results
indicate that the best value for ,t depends on the range of
P considered. These reasons may explain why ,t 3 is
more suitable for notched pallet stringers than the value
, 5 found for other notched beams.

4 9



As mentioned previously, computed FE deflections were
sensitive to assumed EJG,, ratio. Computed FE , values,Showever, show little dependence on this ratio (figs. 6-8)

-due to the adjustment of MOE by equation (8) The
__ stiffness equations thus appear adequate to model wood

stringers with E,/G,, ratios ranging from 8 to 32.

Fillet Stresses
/ The hybrid fillet element (Gerhardt 1984) directly computes

the hoop stress along the fillet, ar.. The hoop stress can be
readily resolved into stress components:

(1) along the grain 1os),
-__ -. (2) perpendicular to the grain (a,), and

(3) shear (T,,) by

. . . . . . ., s ,in 2 0
E ., COS

2
0 (9)Dimensionless Notch Depth 4 D/h = a, sinacosO

Figure 8.-Stiffness coefficients Va and , versus The variable 6 is the fillet angle shown in figure 5. The
for , for double-notched stringers under uniform hoop stress distribution along the fillet is shown in figure 9 6
load. Dimensions (see fig. 2): Q 48 inches, h for a stringer (k = 48 in., h = 3.75 in., t = 1.50 in.) with a
3 75 Inches, t 1 5 inches, s = 44 inches, W = 9 center notch (fig. 1; W = 9.0 in., D = 1.5 in., p = 0.50 in.)
inches. a - 9 inches, m = 4.5 inches, and q loaded in quarter-point bending (s = 44 in., a = 11 in.).8.5 inches (ML84 5503) Results are presented for all six property ratios (table 4).

For this loading condition, the fillet region is loaded in
pure bending. Stress results are presented in
dimensionless form a,/(6M/th2) where M is the resultant 0

- ,, ] bending moment at the stringer cross section containing
. ..... the fillet (0 = 900 in fig. 5).

--.. J/1_ The complexity of the stress distribution along the fillet is

. . ,evident in figure 9. The magnitude of the maximum hoop
- --_ -- . /. ifi/  stress, a,_.,, depends on the assumed elastic property

....... ratios. Computed a,. is 44 percent greater for property
/ #,~/ set G32-E24 compared to set G8-E6. The locations of

o/ maximum a, andT T along the fillet are distinct. In general,
i - / both differ from the location of ,.. Furthermore, both

y, .// location and magnitude of maximum cr and T, depend on
. -,VX_ , elastic property ratios, loading conditions, notch depth,

-. and fillet radii.
E
* 6 . .. In principle, equations for stringer strength could bederived by combining the stress distributions of figure 9,

Fillet Angle eo equation (9), and an interaction equation such as the one

Figure 9 -Dimensionless hoop stress versus fillet proposed by Norris (1962). The complexities cited in the
angle for all six property sets (ML84 5504) previous paragraph, however, do not allow derivation of -. "

simple design equations by this approach. Fortunately, a
suitable equation can be derived using only a-,. as will be
shown later.

Maximum Hoop Stress as a Function of Notch Depth
Maximum hoop stress was computed for all the double-
and single-notched FE stringer models described in the
stiffness section. For these models, fillet radii was fixed at
p = 0.50 inch. Two significant findings greatly simplified
interpretation of the numerical results. 6

0_,;5
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These two findings allow a_, to be estimated for both
single- and double-notched stringers under any loading
condition once the functions f,(o) and f2(o) are determined.

The dependence of f, and f2 on o is indicated by the
Ssymbols in figure 10 for the property set G16-E12. I

discovered that these tendencies can be approximated by
the simple functions 1/(Ao + B) for f,(o) and (Co - F) for
f2(0), where A, B, C, and F depend on assumed elastic . -.

property ratio. These coefficients were determined from
/ / least square fits to the FE results and are presented in " -

_0 - table 5 for all six property ratios. The two functions are

plotted as lines in figure 10. The derived equation for ,
now takes the form

;,, , - , rrm, = (6M/th2)[1/(Ap + B)] + (6V/th)(Co - F) (11)

Dimensionless Notch Depth (P D/h where 0.267 : s< 0.667. The positive directions for M
and V are both defined as to generate tensile fillet

Figure !O.-Dimens~onless functions f, and f stresses. The positive sign conventions are illustrated in
versus o for property set G16-E12 (see eq. (10)). figure 11 for the two possible fillet orientations. Some care
(ML84 5496) should be exercised in assigning the sign for V. Resultant 0

shear forces in directions opposite to those shown in
figure 11 will reduce a.. This effect will be seen later in - -

M M I the experimental results.

To examine the amount of error introduced by the closed
form expression, predictions from equation (11) were

v compared to FE results. For each notch depth in each
material set, am, was computed for six combinations of M

v and V (three different loading conditions for both single-
and double-notched stringer FE models). Since 7 depths
and 6 material sets were considered, 252 FE calculated

I (iIb) oam_ were compared to equation (11). I found the
filiet on ;eft fillet or, right difference (absolute) between equation (11) and FE

de ot notch side of notCh calculations to be less than 5 percent (pct of FE ,

value) for all notch depths except D = 2.5 inches -..-
Figure 11 -Positive sign conventions for resultant
bending moment (M) and shear force (V) at the (4i = 0.667). For this extreme notch depth, equation (11)
stringer cross section containing the fillet. predictions exceed FE calculations by 12 to 15 percent.
stIL84 5508) For all 252 comparisons, the mean absolute difference ..

was 3.96 percent. Thus, equation (11) and table 5 reduce
an enormous amount of FE calculations to a simple but

(1) For all loading conditions ,,.. could be approximated accurate form.
by an equation of the form

i ,. (6M/th) f,(o) - (6V/th) f,(i) (10) Table 5.-Coefficients for equation (11)'

where Material

f,(,:,) and f() are dimensionless functions of o to be property set A B C F A/B

determined NI and V are defined as the resultant bending G8-E6 -0.4148 0.3279 1.751 0.5218 -- 1.265
moment and shear force. respectively, at the stringer G8-E12 .3868 .3064 2.330 .5150 - 1.262

cross section containing the top of the fillet (at !0 = 90' in G16-E12 .3494 .2766 2.815 .8485 -1.263

fig 5) M and V can be easily determined for any loading G16-E24 -. 3281 .2604 3.449 .8535 --1.260

condition from shear and bending moment diagrams G32-E12 2973 2351 4.525 1.322 --1.265
(Byars and Snyder 1975). G32-E24 .2872 .2277 4.981 1.297 -1.261

For notches with fillet radii of 1, 0.50 in.
(2) Computed ,- for single- and double-notched stringers
differ by less than 0.6 percent if M. V. and o are the same
for both cases. For the geometries examined, the
presence of a second notch negligibly increased fillet
stress

*11 0



Experimental Results and Discussion

L "r ' r" r -l suress ritensity Experimental results from tests of green oak pallet... r. -r,. ''"r 'ersu', drmensioniess stinncers are presented in this section. These results are
' " e w\OQ bams. It is won") compared with both FE calculations and the derived

c ., s propc-ed 'er f.lt,) and 2lQ) model stiffness equations. An equation is derived to estimate
r._, t,-,-.osftv ,r,es qoite well for tile stringer strength as a tiu -tion of notch depth.

Material Properties ,
Maximum Hocp S.l.ass as a Function of Fillet Radius
The cape "-enc y U r or fillet radii 1, is examined in After mechanical testing, the measured moisture content
tabie 5 "cr ncth e.,th -I, D = 1.5 inches and property (MC) of all stringers was above fiber saturation. The
S et ,-:'2. its are fni oaaing with pure bending at minimum MC was 42 percent, and mean MC for each of

i1 -. 's range ct p represents the extremes the 20 groups ranged from 58 to 68 percent.
rr r, .-:r d ;;et radios INWPCA 1982). As expected,

stress inc-ei :.s a:s he fillet radius MOE and MOR values were determined for the 3
Sr :''d ' - c nge :s fairly smai unnotched groups of 30 stringers each. Mean, standard

-eu t. . - and 0 5 rich riffler from the deviation iSD), coefficient of variation (COY), and 5th
0 . &r... .j c ny 15 pcrcent and 8 percent, percentile values are presented in table 7. Ranges

publ,shed in the Wood Handbook (USDA 1974) for small,
clear specimens of green red oak are 1.18 to 1.79 million

--
. , ried V 'e following section indicate that lb/in.2 for MOE, and 6,900 to 10,800 lb/in.2 for MOR. The

,,- et;.- -5 and 1.0 inch does not significantly values in table 7 fall into these ranges, but at the low end
ar'ect -:rergtri .," c, een oak str'ngers. Thus, for the for MOE

or r'- V s'udy, eterm,,,a tion of the functional
- .e ,..ciert" ir table 5 on p is not Single-Notched Stringers

e. " , j. -ir-de ,-v. t' ever, can be readily
ctzern,re'e :r.-n. acitcxai FE modeling if required. The effects of notch depth, fillet radius, and loading ,

cond't;cn on stringer stiffness and strength were examined
oy testing stringers with a single notch (fig. 1).

abie 6.-Effect of fillet radii on maximum hoop stress'

-- .,(6M1ll/th') Stiffness *
. -. .. . . . .. .-Defl.:tior,s ',. (at x = s/2) and 6, (at x = s/4) were

measured for each stringer under a small load. MOE was)50 753 computed for each board using i p and equation (5a) orJ Ts 6 57., 00 602 (6a) with 3. In table 8 computed values are presented
.. ........-- .. fcr stringer groups containing different notch depths (the

"" r- ' . . propertv set G16-E12; resultant shear first eight groups). If the stiffness equations reliably .
-: ,,lt v estimate the effect of notch depth, computed MOE will be

independent of notch depth.

Consider first mean MOE values for stringer groups with
notch depths of D = 1.0, 1.5, and 1.875 inches (see
table 1) Analysis of variance indicated that the hypothesisof equal means could not be rejected since p = 0.38 for __

the three center-point loaded groups and p = 0.11 for the
three quarter-point loaded groups.2 The difference
between the highest and lowest means is only 8 percent
fc' the three center-point groups and 14 percent for the
three quarter-point groups. This compares with
differences of 11 and 19 percent, respectively, when t istaken as 5 in the stiffness equations. As indicated
previously in comparison of FE results and the derived
stiffness equations, use of t = 3 more reliably predicts . -.stringer stiffness. Mean MOE values for the six groups,
however, exceed unnotched MOE values by 11 to
28 percent As mentioned before, the notched stringer
groups contained a greater percentage of clear wood than
the unnotched groups.

'he p value i defined as the probability that if the hypothesis (equal

me,,sri's trus t';e given (or larger) difference of means wil be observed
Value. uf p less than 0 05 for instance, would imply that the difference in
means ,s statistically significant at the 5 percent level

" . " -i . - -!: - .: - " .. .-- " . :- : -. "-. -, - - . :- . . --. -



Table .- Prcpeities of unnotcrit.! atrinpers,

'1aoulus of elastirity Modulus of rupture

denteication 50; Stjodard Coefficient 5th Standard Coefficient
Mean; Derceiitile lev iavon of variation Mean percentile deviation of variation

---------- ------------------ Vol;(.1,ir Ci------------------------ pr ----- ---------------- Lbin--------- --------------
V-I2 23 90. 7.360 4 350 147 ';0

1 2e 7~f n3 20.0 3,730 5.500 1.980 22 7
- C ---- 2 97 A3 21.6 8.240 5.830 1.350 16 4

Cin,.ens;cns and loadinq corditors 2. t n labie 3; 30 str!,-ceil '-tc

Table 8.-Stiffness results for single-notc!,ed stringers' (fig.

ModLIIJF 171' REXPI RFEG qBTG RBT REXP
Group 2
identification Mean 5th Standard Coefficc it AenCoefficient Ma MenCoefficient

Dercentile oieviition 01 variatic of variation Ma Menof variation

-------- WA'onr, ------ ------ Pct VcI
C-P-I 30 1.37 0944 25. 4 55 41 161 15 8 12 42
C-D-2 30 1 38 728 31 24.0 61 2.8 1 66 163. 10 2

*C-D-3 30 1.48 670 .079 25.6 1.66 26 1 69 1 61 '0 26
-C-D-4 28 1.60 .866 .374 23.4 1 73 1,8 1 74 1 71 99 17

*M-D-1 29 1 34 .863 91 21.7 143 4.7 1 48 15. i0 Cie
*M-O-2 29 1.47 778 350 23.8 151 2 7 1 56 1.5 2

* -- 3 2 53 71 366 23.9 161 28 1.62 1 62 i 9
M-D-4 29 1.71 1.097 .339 19.8 1 69 38 170 4 01 4.3

*M-R-I 30 1.52 1,125 .237 15.6 1,48 34 1,56 1 57 1 07 3 5
MR2 30 1.48 1.111 .237 16.0 1 48 25 1 57 -,57 ' 06.o 25

M-R-3 30 1.40 .767 302 21.6 1 51 2,9 1 57 1 57 '.)1 4
MR0 30 1 38 .714 .295 214 150 32 - i1fi '05 32

M-S-1 30 1.47 .944 .279 19.0 1 46 3.9---
*M-S-2 30 1.35 .931 .207 153 1 45 27 -- --

Dimensions and loading conditions given in table 1 .

Sample size.

Modulus of elasticity computed from equation (5a) or 16a) and measured Ap, where A, is the midspan deflecl~on (at x 2

Experimentally measured where 1r, is the stringer deflection at x =SA4

FE como~uted .h using medn geometry for each group and property set G16-E12

* Computed A/Qusing derived stiffness equations with ge,,mretry cf each stringer

*MOE means for groups 0-0-4 and M-D-4 (notch depths of fi~culty can be civerceme The atic ;Pnesiltve ,o V0>1
.0 2 5 n--hes o- -0.667) are higher than those of the for stringers with constant PAGA aloiig :he 51 ii-e enin-

* three ansocialed grokups NOh shallower notches. Tnis can toe ratio is indpepndepr ;k-0(F*e re -ietine !t-re#
* be attoued to !he Overestimation of -7 'or extremely deep /-,ratios

n or ,, ( C 601. The overestimation was discussed 1 ; REXP-excierimer tanly mni ir(
earie an,,'iS 3llus'rated m figures 6-8 for double-notched 2aB-aclrdfo t~#se~?.~ a.S ~
str~rqce-s Pallet stringers, however, are not normally l(21fo each slc rriger from

"otchd ths deply.31 RFE-calculated from FE -doi -nu7 ear Str fl4r ii
MOE vaiues vary su bstantaly in a given group as en nsfracqru

videInced n, theP SD anC (CVy results in fat e 8 This -h 0 hV -. S
)ar.,i*onrnia~es '-qmparison of meosured defleci, ns'Visth T. ii~ .~T.- n~* .

aird -thIfrj~c equations rather difficult sn.e, a 1 ~ lir~i ''~ ;~l.~.. .'

% ' .A OE is 'equred to obtatn either tf'eoiretical VIQ

'e. ?Ev ~Oi ng tlhe ratio -ic .n&f. ie, this
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REXP and RBT were compared for each stringer by From measured P, and P., resultant bending moments M,
computing the ratio RBT/REXP. (crack initiation load) and M. (ultimate load) were

calculated at the stringer cross section containing the fillet
The following results were found by comparing the (at 6 = 900 in fig. 5). Define normalized crack initiation
various 5p/ o ratios (see table 8). For each group: and ultimate moments by M,* = M/(th2/6) and M, = MJ

(th2/6), respectively. Dividing the moments by the section
(1) REXP had low COV values (1.8 to 4.7 pct) indicating modulus of the unnotched portion of the stringers allows
the relative independence of 5p/bQ on stringer MOE. the moment capacity to be compared directly with the

MOR results in table 7. Results for all 14 groups are
(2) RFE means differed from REXP means by only 0.6 to presented in table 9. For a few stringers P, could not be
3.5 percent indicating that the FE model accurately identified from the load deflection curve. M, for these
predicts stringer deflection. (This is also shown in App. A) stringers was not included in the analysis, which explains

the difference in sample size between crack initiation (n,)
(3) RBT/REXP means range from 0.99 to 1.06 with COV of and ultimate (nu) moments.
1 7 to 4.5 percent indicating good agreement between the
stiffness equations and the experimental measurements. Effect of fillet radius.-Results indicate that varying the

fillet radius p (1/2, 3/4, and 1 in.) had negligible effect on
In summary. experimental results from full-size stringers both mean M,* (2,500, 2,640, and 2,590 lb/in.2) and mean
indicate that the derived stiffness equations (, = 3) M (3,250, 3,110, and 3,010 lb/in.2 ). The independence of
reliably estimate beam deflections for both loading fillet radius on crack initiation moment was somewhat
conditions when ,, - 0.60. Computed MOE values unexpected since fillet stress does decrease as p
indicate that 5, is reliably predicted. Consideration of the increases (table 6). Apparently the magnitude of the stress -4

ratio ;)p/,') indicates that deflection 5. is reliably predicted. decrease was insufficient to affect the crack initiation
For extremely deep notches ( > 0.60), the stiffness moment. Leicester (1974) also found the strength of slit-
equations will calculate excessive deflections. notched beams to be somewhat independent of notch root

radii.
Computed MOE is affected little by fillet radius (table 8) as
expected. Mean values ranged from 1.38 to 1.52 million The group containing stringers with notches with sharp
Ib/in 2 Slits cut in groups M-S-1 and M-S-2 did not corners and no fillets (M-R-0) had mean values of M,*
appreciably change MOE. Analysis of variance was done 1,960 lb/in.2 and M,* = 2,730 lb/in.2 . These are
on MOE values for the last six groups in table 8 and approximately 24 and 12 percent less than the filleted
group M-D-2 (same geometry as M-R-1 but cut on an groups. In comparing the unfilleted group to the filleted
industrial notcher). The hypothesis of equal means could groups, the means could not be considered statistically
not be rejected (p = 0.18). equal for M,(p < 0.0001) but could be considered

statistically equal for M* at the 5 percent level (p = 0.13).
Strength However, comparing the 5th percentile values for M*, the S

filleted groups exceed the unfilleted group by 17, 69, and
The amount the u97 percent. The fillet apparently does have a beneficial
which the crack initiated at the fillet, P,, was highly effect on notched stringer performance, although all fillet
variable. For some stringers, knots caused cracks to rdietwn 0.5cnd 10inch elde thuame stret
propagate to an edge and Pu exceeded P, only slightly. In radii between 0.5 and 1.0 inch yielded the same strengthresults in this study. •
more straight-grained stringers, the cracks propagated
toward the stringer ends and stopped. These stringers did
not break but experienced large deflection with decreasing S
load. For this type of failure mode, P. was substantially
greater than P.. For a few cases, the difference was close
to a factor of 2.

14
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Table 9.-Critical normalized bonding moments for single-notched stringers' (fig. 1)

Group
identification 2n, 5th Standard Coefficient 4n. Mean 5th Standard Coefficient MeanMean 5th StadarMCofniien .

percentile deviation of variation percentile deviation of variation

----- -Lb/n 2 - - - - - - - - - - - - - - - Pct ------------------ Lb/in.2 
---

- - - - - - - - - - - - - - - Pct
C-D-1 29 3,430 1.790 681 19.9 30 4.040 2.690 747 18.5 0.266 .
C-D-2 26 2.410 1.560 440 18.3 30 2,710 1,620 562 20.7 394
C-D-3 29 1.610 764 316 19.6 30 1,860 1.050 371 19.9 .509
C-D-4 25 800 454 152 19.0 28 903 592 169 18.7 650 "'

M-0-1 30 3.080 1.620 697 22.6 30 4.120 1.930 1.200 29,1 269
M-D-2 30 2,340 1.260 490 20.9 30 2,990 1.600 898 30 0 .387 ".
M-D-3 29 1.640 1.300 233 14.2 29 2.083 1,330 489 23.5 .504
M-D-4 30 885 678 138 15.6 30 1.010 719 266 26.3 .647

M-R-1 30 2.500 1,490 619 24.8 30 3.250 1.960 820 25.2 384
M-R-2 29 2,640 1.900 372 14.1 30 3,110 2.290 501 16.1 387
M-R-3 29 2,590 1.320 568 21.9 30 3.010 1.360 733 24.4 .393
M-R-0 30 1,960 1.130 398 20.3 30 2.730 1,160 725 26.6 .402

M-S-1 30 2,110 1.190 436 20.7 30 3,230 1,690 815 25.2 .391
M-S-2 30 1,930 1.180 433 22.4 30 3.150 1.470 904 28.7 .394

Dimensions and loading conditions given in table 1

2 Sample size for crack initiation moments.

3 M" 6M,/th2: where M is the resultant bending moment at the stringer cross section containing the top of the fillet (ii 90 in fig. 5): M,
is M at the load the crack initiates.

Sample size for ultimate moments.

I M" 6MJth: M. is M at the ultimate load.

D:, = 0/h.

Effect of notch depth.-In figures 12 to 15, M* and M, are 6M B A -
plotted versus dimensionless notch depth o for all th 2  B(' B (12)

stringers in the first eight groups of table 9. The quarter-
point and center-point loaded groups are presented in where 0.267 < , -i 0.667. Surprisingly, the ratio A/B is
figures 12 and 13 and in figures 14 and 15, respectively, independent of assumed elastic property ratio as indicated
The variation of ,,, (D/h) in a given group is caused by in table 5. The ratio can be set equal to -1.26 with little
variation in stringer height (h). not in notch depth (D). The error. Thus, equation (12) can be simplified to
two experimental lines in each figure are the regression
line fitted using weighted least squares (Chatterjee and 6M
Price 1977). and the line for which 5 percent of the th 2 K(- 1.26,t, + 1) (13)
observations should lie below, if the errors are assumed
to come from a normal distribution. 'e 0- 0where 0.267 et, 

< 0.667 and K = ,, Equation (13) .-..

In contrast to the effect of fillet radius, figures 12 to 15 can predict mean M; as a function of q) by appropriately
indicate that the moment capacity is strongly dependent determining K. Define K, as the value of K associated with

on notch depth. In what follows, an equation that predicts crack initiation at the fillet, that is, at a particular value of
mean M7 as a function of op is derived from the FE results. T,, K, can be obtained using mean values from any of
The FE model cannot directly predict ultimate moment the four quarter-point loaded groups. I chose group M-D-2

trends since a variety of failure modes can occur after which has mean M,* = 2,340 lb/in.2 and mean 0 = 0.387.

crack initiation. The derived equation, however, will be Solving equation (13), one obtains K = K, = 4,570 lb/in.l.
modified to approximate 5th percentile estimates for both Mean values from groups M-D-1, M-D-3, and M-D-4
M ° and M:. Design procedures for wood members are compute K, values that differ from this result by only 2.0,

usually based on 5th percentile strength values. - 1.7, and 4.8 percent, respectively. Thus, as predicted bythe theory, K , is independent of i/,.

First consider the four stringer groups loaded in quarter-

point bending (figs. 12.13). These stringers have the notch
region sublected to pure bending (V - 0). For this special
case, equation (11) can be simplified to the form

15
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Figure 13. -Normalized ultimate bending moments Figure 15. -Normalized ultimate bending moments
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* M-D-1. M-D-2, M-D-3, and M-D-4. (ML84 5498) C-D-1, 0-0-2, 0-D-3, and 0-0-4. (ML84 5500)

Equation (13) is plotted in figure 12 with K R,=The discovery that the ratio A/B is independent of
4,570 lb/in2. The agreement of equation (13) with the assumed elastic properties suggests that equation_(13)

* regression line is excellent. The linear, elastic FE results can predict mean trends for other wood species. (K, must
correctly predict the slope of the line, i.e. the effect of be determined at one notch depth.) This hypothesis, T
notch depth on mean crack initiation moment. Note that a however, must be experimentally confirmed before
theory based on reduced section at the notch would applying.
predict that moment capacity is proportional to (1 - 01)2.
The linear relation of equation (13) indicates that M,* is in Equation (13) can be extended to handle any stringer
fact related to stress concentration at the fillet and not a loading condition as follows. Equation (111) can be now

* reduced section theory. written as

K= M r 1 1 6
tK -. 6 -t~i + [ CB4I + FBI (14)
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Nhere 0 267 :. 0 667 Factors CB and FB vary Effects of slits and cutting technique.--Tne slits cut at
somewhat with elastic property ratio (see table 5) The the fillet reduced mean M. by 10 and 18 percent (for two
particular values chosen for CB and FB will not slit lengthsl as compared to group M-D-2 Mean ultimate
signficantly change equation (14) since the moment term moments showed little diffrence as indicated in table 9
is much larger than the shear term I used values from This result cannot be generalized to the problem of a .
property set G32-E24. These will give the most crack at the fillet Cracks initiated at the fillet from patlet
conservative calculation of M when V is positive. (For nailing or stringer drying will be sharper than slits cut by a
dojole-notched stringers under most loacing conditions. V bandsaw The effect of such cracks may be much more
will be positive ) Equation (14) can now be written severe, therefore, additional research is required to

resolve this issue.
6%1 K

tn' 1 Vh i1 The two cutting methods can be compared from results of

126o 1 - M (1 13p -- 0.30) groups M-R-1 and M-D-2 Strngers with notches cut at
FPL (M-R-1) had higher strength values than stringers
notched on the industrial equipment (M-D-2). Means were

where 0.267 - 0667. Equation (15) clearly reduces higher by 6.8 percent (M,*) and 8.7 percent (M.). while 5th
to equation (13) when V - 0. percentiles were higher by 18.3 percent (M,) and 22.5

percent (M.). The differences found, especially at the 5th
For any loading condit io, o V/M s known For the percentile level. indicate that the effect of cutting
four center-point loaded groups, V P/2 (see sign technique on stringer strength may be another area that
convention, fig 11) and M P/2 x (22 4) Therefore V/M warrants further research.

1,18 (in '1 This relationship is valid at both crack 0
initiation and ultimate loads. To use equation (15) to Double-Notched Stringers - "
predict mean M" simply set K IR 4.570 ib/in 1. Since
K s related to a critical value of fillet stress. it 5 not Equations that predict stringer stiffness and strength were
dependent on stringer loading condition Therefore, the previously derived. In this section the equations are
value obtained from quarter-point loaded stringers is compared with test results from three groups of double-
applicable Equation (15) is plotted in figure 14 using K notched stringers.
R and a mean value for h of 3.78 inches The agreement
of the experimental regression line with equation (15) is Stiffness
quite good Note that none of the data from center-point Stiffness results for double-notched stringers are
loading were used in constructing the theoretical line presented in table 10. MOE was computed for each board ..

using 6, and equation (2a) or (3a) with 3. Mean MOE
For this loading condition the resultant shear at the fillet values for the three groups are 1 52. 1 45. and 1 28 million
redices the maximum hoop stress (see eq It1)) lb/in.2 . These means are similar to those found for single-
Comparinn figure 14 with figure !2 indicates that both notched stringers with notch depths of D 1 0. 1 .5. and
experiment and theory predict that the resultant shear 1 875 inches (see table 8). The deflection ratios in table 10
increases the moment capacity. are defined as before except that &o is measured at x -

m - 4 5 (see table 2 for m). The FE ratios (RFE) differ
By appropriately selecting K, equation (15) can also m th e m e 2xper m )t ra aos ( FFE) differ

reliably calculate 5th percentile trends for both M* and M* from the mean experimental ratios (REXP) by only 0 8.
1.3, and 4.0 percent. The agreement of the experimental

Equation 115) is plotted on figures 12 and 13 IV/M 0) ratios with the stiffness equation ratios (RBT) is also quite
and figures 14 and 15 (VM 1/18 in ' using K Ks good since mean RBT/REXP values range from 0 97 to

3.040 lb/in 2 for crack initiation moment (figs 12.14) and 1.05 Note that REXP increased from 1 49 to 1 72 as tht
K Kl 3.340 lb/in. for ultimate moment (figs 13. t5 span changed from 44 to 40 inches This increase was
Agreement of these lines with regression lines is accurately predicted by both the FE results and the
excellent stiffness equations

In summary. a theoretical equation based on FE
calculations was derived to predict mean crack initiation
moment as a function of notch depth The equation is -
based on the maximum fillet stress without reqard to
interaction of stresses such as tension perpendicular to
grain and shear Agreement of theoretical equation with
experimental results was excellent for two loading
conditions By adjusting the value of K in eauation (15)
5th percentile trends were accurately modeled for both M'
and M" The load associated with a calculated criticai
bending moment can be readily obianed for any loading
condition from the stringer bending moment d(aqrar,
(Byars and Snyder 1975)

- . . - . , . - .



Table 10.-Stiffness results for double-notched stringers' (fig. 2)

Modulus of elasticity3 REXP 4  RFE$ RBT6 RBT/REXP
Groupcain Ma 5th Standard Coefficient Mean Coefficient Ma MenCoefficient

identipecrcentMea deviation of variation of variation Ma Menof variation

------- Million Il/in --------------- Pct Pct Pct
M-T-1 30 1.52 1.012 0.264 17.4 1.30 4.3 1.31 1.36 1.05 4.20

* C-T-11 30 1.45 1.069 .191 17.9 1.49 4.0 1.47 1.47 .99 4.1
C-T-2 30 1.28 .736 .263 20.5 1.72 6.3 1.65 1.65 97 6.2

Dimensions and loading conditions given in table 2.

2Sample size.

Modulus of elasticity computed from equation (2a) or (3a) and measured 6p, where is, is the midspan deflection (at x s/21.

Experimentally measured ',/, where 6,, is the stringer deflection at x - mn 4.5 (See table 2 for in).

FE computed ~, 0 using mean geometry for each group and property set G16-E12.

Computed 3p,3 Q using derived stiffness equations with geometry of each stringer.

Table 11.-Normalized crack initiation moments for double-notched stringers, (fig. 2)
M-3 h Computed4 M

Group 2n,____________ ____ _____
identification 2n 5th Standard Coefficient Men Meaficen5thpercentile deviation of variation anpercentile

... /.......... MilPCt In. Lb/in.. Lct Pcnt

M-T-1 28 2.460 1 410 472 192 0383 3.75 2.360 1.570
C-T 1 29 2.100 1.540 298 14.2 .379 3.74 2150 1,430

C-T-2 30 1870 1,140 429 22.9 381 374 2,100 1.400

Dmensions and loading conditions given in table 2.

2 Sample size

M M e 6Mnth where M is the resultant bending moment at the stringer cross Sections containing the fillets closest to midspan. M is M
at tne load the crack initiates

C omputed from equation 151 with K 4,570 lb/in.2 
for the mean values and with K K 3,040 lb/in.' for the 5th percentile

values

Table 11.-Normalized ultimate moments for double-notched stringers' (fig. 2)

M,3 €hComputed4 M -
Group n. 5th Standard Coefficient 5th
identification Mean percentile deviation of variation percentile

I ....----....- ---- Lb-in ? ------------.. .. .. ... .............. Ct Lb/in 2

M-T-1 30 3.070 1 890 777 253 1 .730 5

C-T 1 30 2230 1.320 447 200 1.570
C -T2 30 2000 1.210 451 226 1 .540

Dr elsiors and oading conditions given in table 2

SSaie stze

6V Mtn where M .s the resultant bending moment at the stringer cross sections containing the fillets closest to midspan M, is M

at T-e oa the crad t

* Compued frm equation .15) with K = K1a 3 340 bbihn

Grou.. -



Strength Table 13.-Effect of span on center deflection of double-
Experimental results are presented in table 11 for crack notched stringers, (fig. 2)
initiation moments and in table 12 for ultimate moments. Reduction in center deflection'
The bending moments are computed at the fillets nearest 2___

midspan. Cracks always initiated at one of these tv, fillets D enrpotladUiomod
because they were subjected to much higher bending s9-42 inch s 40 inch s -42 inch s - 40 inch
moments than the fillets closest to the supports. Equation In ------- Pct ---------- ----------- Pct -----........ -
(1 D (b was used to calculate mean M,* (K = 4,570 lb/in .2) 1.00 0.267 14.7 27.9 19.5 32,0

*and 5th percentile values for M,* (K = 3,040 lb/in .2 ) and Mu 1.25 .333 15.2 28.8 21.4 34.0
(K 3,340 lb/in .2) . The appropriate values for V/M are 0 1.50 .400 15.7 29.7 23.1 35.9

* M-T-1l, 13 in. I (C-T-1). and 11 in. ' (C-T-2). The 1.75 .467 16.1 30.5 24.7 37.6
*predicted mean M* values differ from the experimental 2.00 .533 16.6 31.3 26.0 39.1

values by only 4.0, 2.4. and 12.3 percent. The theory thus Dimensions: h = 3.75 in.. q = 8.5 in.. W =-9.0 in.
reliably predicts mean crack initiation moments for double-
notched strngers. The center-point loading resulted in o = D/h.
positive resultant shear forces at the fillets nearest
midspan These forces increased fillet stresses and 3As compared to span of s =44 in.
reduced moment capacity as compared to the two-point
loaded group. This reduction was predicted by both theory For center-point loading, reducing span actually decreases
and experiment. moment capacity at the fillet as indicated by experimental-
Th ifrne ewe xermna n rdce t and theoretical results in tables 11 and 12. This reduction

The iffrenes etwen epermenal ad pedited5th is caused by an increased shear contribution (higher VIM
percentile values were 11, 7. and 23 percent for M,* and 8, ratio) to fillet stresses. Although the moment capacity at
19. and 27 percent for M.. Differences of this magnitude the fillet decreases, the load carrying capacity of the
are quite acceptable since the sample sizes (about 30 stringer does increase as span is reduced. The increased
stringers/group) are small. Fif" percentile regression lines load capacity is caused by altered relationships between
for single-notched groups were 1-ised on about 120 data load and fillet bending moment. Load capacity changes
points. Although the agreement oe~tween equation (15) and can be easily calculated from equation (15) and stringer
these lines was excellent, the magnitude of differences bending moment diagram. I found that decreasing the
between experimental and predicted 5th percentile values span from 44 inches to 42 and then to 40 inchesfor individual groups were similar to those found for increased load capacity by 7.5 and 16 percent for center-
double-notched stringers, point loading and by 6.8 and 15 percent for uniform

Effect of Span laig
Results from group C-T-2 examine the effect of reducing
span on stringer stiffness and strength. The span of 0
notched stringers is somewhat adjustable since pallets are
often supported across the stringers in warehouse racks.
Stiffness changes are examined in table 13 as the span is
reduced from 44 inches to 42 and then to 40 inches.
Calculations were made using stiffness equations (2a) and
(4a) with a = 3. The reductions in center deflection are

* based on percent of the value when s =--44 inches.
Based on beam theory, reductions for unnotched beams
would be 13 percent (s 42 in.) and 24.9 percent (s
40 in.).
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Appendix A-Comparison of Finite Element Results
With Experimental Measurements

A finite element (FE) mesh similar to figure 5 was Table Al-Comparison of finite element (FE) and photoelasticity
constructed to model a small (k -: 11.375 in., h 1. 5 tn., results'
t 0 25 in ) single-notched (D 0.5 in.. W - 2.5 in., -.... D ..... , Difference

0.1875 in ) Sitka spruce stringer loaded in center-point K,_K,,,
bending 4 Com puted and measured center displacementr ----------------- in- ................ Pct

is shown in figure Al. The agreement is excellent. 2.00 0.50 0.50 2.330 2.26 3.1

validating the FE model for stiffness computation. Strains 2.00 175 .50 2.026 1.99 1,8

were also measured in the spruce stringer when :oaded in

tension ' Experimental and computed normal strains 1.33 .50 .50 2.358 2.29 3.0
compared favorably except at the fillet tip. At this location, 1 33 .75 .50 2.061 2 03 1.5
the linear elastic model could not predict the apparent 1.33 1.00 .75 1.915 1.87 2.4
nonlinear response. .923 .50 .50 2.278 2.18 4.5

.923 .75 .50 2.004 1.96 2,2
I compared FE results with published photoelasticity .923 1.00 .75 1.843 1.82 1.3
results to insure that the fillet element computed accurate, Results for a tensile-loaded stepped bar with shoulder fillets, i.e.
inear elastic stresses. Experimental results for a tensile- fig. 5 (h = 4.0 in.) with symmetry imposed along y - h and
loaded stepped bar with shoulder fillets are presented in loaded in uniform tension in the x-direction
figure 65 (Peterson 1974). The problem can be modeled
ty the mesh of figure 5 with vertical symmetry imposed 2 K, = a-,,,JT, where a,_ maximum stress along fillet and T
along tle top surface. Since the formulation for the hybrid tensile stress applied to narrow section of bar.
element *s anisotropic, near isotropic properties were
useo ir the analysis, i.e., E,/E. = 1.001, GJE. = 0.4, ,, Photoelasticity values estimated from fig. 65 in Peterson (1974).

0 25 The fillet radius (p) and notch depths (D) chosen
are shown in table Al These approximate the ranges
needed in modeling the notched stringer. The mesh used
was dentical to figure 5 with h 4.0 inches, except that
six 12-node cubic elements were added to the left side to
insure uniform tension at the end. F
Computed and experimental stress concentration factors,
K. are compared in table Al. Kr is defined as maximum
fillet stress divided by nominal tensile stress in the narrow "
sect:on of bar Computed and measured KT differ by less
than 4 5 dercent for all nine cases. Varying Q by 0.5 to 1.5 j,

times . Cr,anged computed Kr by a few percent. Values .

showr" in table Al agreed best with experimental results.
These scalings vere used in the notched stringer models.

Toe iycrid element contains 13 nodes Thus, the minimum
ru''l:er of terms required in the assumed Taylor series z L_ _ _ _ _
expa-son is 12 (Gerhardt 1984). This minimum number DEFLECTION tin
A AS sed in the results presented in table Al. Results

r s.,ng 13-17 terms changed K, by only tenths of a Figure AI-Comparison of FE and experimental .
pgrier, t Finally. 20 gauss points were used to integrate midspan deflecion for a small, single-notched
ea-r sde of the hybrid element (Gerhardt 1984). This level stringer (ML84 5506)

3' iuadrature resulted in stress convergence to five
,ce,-,rnal points In conclusion, the photoelasticity results
n cate that the scaling used in figures 4 and 5 will
comp.te reliable elastic stresses over the desired ranges
of D ard S

' 1 ,*
°  

Ge ar,:t T D Peterson R A RPwa,is R F Stffne%,

I -i- r i, beams rla,,q rectanqguar fiiete,i notches in
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Appendix B-Definition of Dimensionless
Factors for Equations (2-7)

%
Dimensionless factors ~ for double-notched stringers (fig 2) are defined as follows

8(FIL ma ) 12,th0 (3 ?~ 48, 2 h2-(, 12 r, C, -8Th )2

1 1rna, 8m,3 4a" 12,,)i' - a 24,Th)a 2,1 1, . 24hC

[ 1n,.a . 2m" 4 a 3n h. a' 12.n 3h bC. 1 G. .b.

16 n 14 3n,) rn~jt 4 -3rr) 96 h' Iti-I 192-hi 2 3 .2 3

96 zi~ C, 192.2,, 96,,")C,, - C:

a') 2 a rn, 4 3rrt-2r-a 3 2nl a3 t1

12 2 3 2- (1 :11
12' *2 ) (1-2. 6,h C.,- 12, 2hYC, 6,,3 h'C. C.

'- ,:' c ilecs rcistariis are Ldefnec! bv See fig 2i D/h n (m .WC.b h f a as.t !0 M
n 9' h i r The corstants C i 1 .20) are defined inr lable B 1

~~er -c~ eS f~~o' - or sinqte-ncitched stigors (fig 1) are defined as follows.

i :r12,,h K. 48, 21h2  12Tih 3K, K,

1 3 12m 12 h 4 2- 12K, 24'>h K
3 4a-- 1 (I ) 1 r 2'~K 4 2 K .

1 3  6m, 3.0h
4a, hL) .3K.. K.,

5 1 6mI( 4 3m)i 96.,tl-1 12 2 3i
96-.hiK, 193 *K .12.H K.

1 2m,-l 3 2M 6h- 1 1.2 2.

.' 2a-aiL 0' K t(

6 6.0 K 12 Ih-K., 12-.-K_.- 'K.1

T iI o es corsla'ts are riefriod by (see fig Ii.)' D/h i0 0,s a a" "1 ri s, tr (1 !11 - I-i

Trioi cnstntsK i .17) are cl~fn-ed in ',in)' R2



Table 81 -Relationships for constants C1 (I = 1,20)

Appropriate notch depth interval
'11 212 I

'0, 4 +99

C2 40~~ + 10 1

'C3 -49n(1 - 0) 3 - 2n(1 - ) - 29n(62) 3 - 29n(O2) - 2kn(83)

OC, 1 + 8(xl - x,
3
) 1 - 8x,

3  
0

C , joa - 2  oa. y a.00

C. -23 0 -- a. ao  a0,

C7 -2Pn(1 - ) 3 - 2Qn(02) 3 - 22n(02 )

Ca 3a. + 8xf - 12x,ao 3ao - 12x2ao 0

C, J3f(-1i - ) - -4I.(1 + " -y2(1 + _y) -y2.(1 + .)02

C,o 3.(2 - 33.) -y(2 + 3y.) yf(
2 + 3-y.) -t(2 + 3%)0,

C,, -4 -6(d - -yo) n(1 - ) 3 + 2m. - 500 - 2aoho 2 + 2m. + 2n. - 500 - 2(1 + 3-yo)Qn(03)
- 2(1 + 3yro)kn(1 - 0) - 2(1 - 3,o)Qn(6.) - 2(1 - 30.)9n( 2)

C,2 5 + 16xN-4 + 3x,) + 16xQ(4 - 3x,) 5 + 16x,-4 + 3x,) 0

C,3 4 + a a0,

1C,4 3. 0 0

C, -2Qn(1 - o) 3 - 22n(02) 3 - 2kn(02)

C,8 3a.1 + 2x? - 6x,a.2 3a - 6xrao 0.

C, 32( -- 1 + dj) + -0a (1 + -y) y a(1 + 1.) yoa o(1 + -. )0,

C,$ 3o(2 - 31) - ao(1 + 21.) -a(1 + 2-,0) -ao(1 + 2yo)0,

C,, 2( -1 - a. + 3 0o)Qn(1 - o) t 2m. - 2x, 2ao2n(1 - ) + 2(-1 - 30l0)2n(02 ) + 3 2ajn(03 ) + 2(-1 + 300)9n(02 ) + 3 + 2m,
4- 2m. - 50. - 5(30

Cm a. - xj(4 -- 3x,) + 2x,ao(-3 + 2x,) ao + 2xao(-3 + 2x,) 0

1I,: 0 m/, and 0 ! q/a (see fig. 2)

1 l2: D m/,, and D ' q/a

1,: D > m/, and D > q/,v

* 0, 2,,h/(1 - 2 %)

'82 tho(1 - o)/d; 03 = (1 - 0)0,

x, = o - aho, x, --y aho

S S

* 24

"*:7 7.*..



*r 0

Table 82- Relationships for constants K, (i 1,17)

Appropriate notch depth interval

'Ii 212

K, Same

K, Same

K(3 2kn(1 - Same

* 3K. 8xQ Same

-K, A,, a,1(a0 - J042 + 1 /a,

K, 1 (a0 - 20Q)04 + 2d,, /ao

* K, 12x 4a 24cy3h.3n(O,) + 8x? /a.,
Same

K, M,,2 -33.,) Same

K,0  mo , - (1 + 30,,)Vn(1 Same

K,, 16x,1(4 3Q, Same

K, 1 a - --~
K13 6x, 4a, 12ahj( - 0,) + 6oAh.3Vn(O,) +2xj /a~ 5

* K,. ,)1 3, 3.(- -1 + Oo)042(a. t3.) +4 (30"/a.

* K, 2A (1 -2(0)04 + 13(- -2 + 3,3o)(04 - 1)/a.

* K, 0(1 - Q~ n (0,) + a0 - x, + (1 -303,)Qn (04) /a.

K, a,2( - 2 +a 0) 4 2X2(3 -2x,) x,(4 -3x,)/a.

*0 (m -a)/(, (see fig. 1)0

21:D (m - a)/cy

3 X, ,3,,

5 0, 0( O0 .

0

- * 2.3-12/84

0 25



FILMED

* 2-85

* DTIC


